
Mining Periodic Patterns in Spatio-temporal

Sequences at Different Time Granularities∗

Sezin Karli †, Yucel Saygin ‡

Abstract

With the advancement of technology, it is now easy to collect the loca-

tion information of mobile users over time. Spatio-temporal data mining

techniques were proposed in the literature for the extraction of patterns

from spatio-temporal data. However, current techniques can only extract

patterns of the finest time granularity, and therefore overlooks potential

patterns available at coarser time granularities. In this work, we propose

two techniques to allow mining at different time granularities. Experi-

mental results show that the proposed techniques are indeed effective and

efficient for mining periodic spatio-temporal patterns at different time

granularities.

Keywords: Data Mining, Spatio-temporal Data, Time Granularity,

Periodic Pattern

1 Introduction

Our daily lives contain several routines. Some of these routines can be visits

made to places such as work, home, favorite restaurant, and so on. These visiting

habits are generally available for most of the moving entities. The trajectories
∗This work was partially funded by the Information Society Technologies Programme of

the European Commission, Future and Emerging Technologies under IST-014915 GeoPKDD
project

†E-mail: sezinkarli@su.sabanciuniv.edu
‡Corresponding author. Address: Sabanci University, Faculty of Engineering and Natu-

ral Sciences, Orhanli, 34956, Tuzla, Istanbul, TURKEY, E-mail: ysaygin@sabanciuniv.edu,
Phone: +90 (216) 483 95 76, Fax: +90 (216) 483 95 50

1

of vehicles or the immigration patterns of animals are examples of these travel

routines.

Travel routines generally exhibit periodic behavior. For example, we go to

our favorite pub at every Friday night or we come back home from work everyday

approximately at the same time or a certain bus visits a bus stop with intervals of

half an hour. The natural periodicity of these patterns makes the task of periodic

pattern mining interesting and this discovery leads us to an important question:

“Can real life situations be modeled with partial periodicity or full periodicity?”.

As another example, consider a single day of Tom who wakes up at 7 o’clock,

leaves home at 8 o’clock and arrives at work at 9 o’clock. He sometimes eats at

Boston Restaurant, sometimes at Scholz’s Place and sometimes skips lunch and

works instead. Tom’s pattern occurs most of the days and it is better modeled

with a partial periodic pattern as opposed to a fully periodic pattern since he

skips lunch once in a while or eats at different restaurants.

In the previous example, we considered patterns based on hour, which is an

intuitive time granularity. The real life examples show that mining at coarser

time granularities (such as “day” or “week”) is also important because mining

at coarser granularities can reveal patterns that can not be discovered other-

wise. Consider another person –Brad– who visits his parents living in France

at approximately the same time of the year for a week. It is probable that

this visit will not contain frequent patterns in finer granularities because, for

example, Brad will not visit Notre Dame de Paris for 5 days of the week at the

same hour or he will not always eat at the same place at the same hour. Even

if there was a frequent periodic pattern in the finer time granularity (such as

hour), we would miss it because this pattern will occur during only one week

of the whole year (i.e. it has a very low frequency). On the other hand, if we

did the mining using week granularity and the optimal period, then we would

realize that there is a recurring visit to Paris.

Motivated by examples such as the previous one, we propose techniques that

can mine periodic patterns at different time granularities. In this paper, we work

2

with the spatio-temporal sequence of a single moving object. Moving from a time

granularity g1 to a coarser time granularity g2 is trivial assuming that conversion

from g1 to g2 is possible (every time component of g1 must be contained in a

unique time component of g2): We need to map several time components of

g1 to a single time component of g2. Since there are location measurements

associated with each time component of a granularity, the mapping from g1 to

g2 will force us to a similar many-to-one mapping of locations. We choose to

map several locations to a single discretized representation of these locations.

During the discretization process, we omit the time information related to finer

granularites. This choice has a logical argument behind it. In our daily life,

moving to coarser time granularities has the effect of omitting uninteresting

details related to the finer time granularities. For instance, when we talk about

Rick and Nielsen’s visit to Topkapi Palace, we are concisely saying “Rick and

Nielsen visited Topkapi Palace on Monday”. This statement does not use the

finest granularity although this information was available and it obviously does

not contain at which exact time interval they did the visit, because our intention

in using the day granularity was to disregard details pertaining to the finer

granularities.

Two techniques that use different matching schemes are proposed in this

paper:

1. MINIM - periodic pattern MINer using exact IMportant places informa-

tion

2. µ-PIN - periodic pattern Miner Using approximate important Places IN-

formation

Both techniques make use of the “important place” concept which is defined

in Section 3. MINIM does exact matching of important place contents while

µ-PIN use the similar matching. The reason of allowing this kind of approxima-

tion to µ-PIN is the high probability of obtaining patterns of very low support

while using MINIM. Experimental results show that the proposed techniques

3

are accurate and efficient.

Rest of the paper is organized as follows. Section 2 contains the neces-

sary background information and summarizes the related work in the literature.

Section 3 provides the overview of our methods, the definitions of time related

concepts, preliminary definitions and the problem definition. The mining of pe-

riodic patterns at different time granularities is explained in Section 4. Section

5 contains the conducted experiments and the last section concludes the paper.

2 Background and Related Work

2.1 Clustering Techniques Used

Clustering is the task of grouping similar objects such that we obtain high

intraclass similarity and high interclass dissimilarity. Two different clustering

algorithms are used in our work: DBSCAN [14] and AGNES [23] which are

explained in the following subsections.

2.1.1 DBSCAN

DBSCAN (Density Based Spatial Clustering of Applications with Noise) is a

widely used density-based clustering technique. DBSCAN needs two input pa-

rameters: EPS and MinPTS [14].

1. EPS (epsilon) neighborhood of a sample x is defined as

Nε(x) = {y ∈ D | distance(x, y) ≤ ε} where D is the whole data set.

2. A sample x is a “core object” if |Nε(x)| > MinPTS.

3. A sample x is “directly density-reachable” from a sample y if x ∈ Nε(y)

and y is a core object.

4. A sample x is “density reachable” from a sample y if there is a sequence

of samples p1, ..., pq such that “pi+1 is directly density-reachable from pi”

for 0 < i < q and p1 = y, pq = x.

4

5. A sample x is density-connected to y if there is a sample t (t ∈ D and t 6=

x, t 6= y) such that both x and y are density-reachable from t.

6. A density-based cluster C is a set of samples such that

• If p ∈ C and q is density-reachable from p, then q ∈ C (where q and

p are two samples)

• Every element p of C is density-connected to every element q of C.

Density reachability is symmetric for only the case where x (the first ele-

ment of the sequence) and y (the last element of the sequence) are both core

objects otherwise it is not. On the other hand, density-connectivity relation is

symmetric.

DBSCAN takes a single sample x, checks if it is a core object. If it is, then

DBSCAN iteratively finds all density-reachable samples from x. This process

repeats itself for every x ∈ D. If a previously labeled cluster element is encoun-

tered during a new density-reachability search then both clusters will be merged

into one cluster.

After the run of the algorithm is complete, there will be;

1. Core objects (essential parts of the density-based clusters)

2. Non-core objects belonging to density-based clusters which are in fact

boundaries of these clusters

3. Non-core objects not included in any density-based cluster (tagged as noise

/ outlier)

The weakness of DBSCAN is its sensitivity towards the parameters EPS

and MinPTS. We propose a preprocessing technique (elimination of high speed

data which can be consulted at Subsection 4.1.2) that can remarkably remove

this sensitivity.

DBSCAN’s beauty lies on its success in creating natural clusters. Further-

more, it is powerful in handling arbitrary shapes which is very important in

5

our task (extraction of important places by the clustering of location measure-

ments). Its time complexity is only O(n logn) with a spatial index which we

also utilized.

2.1.2 AGNES

AGglomerative NESting is a bottom-up hierarchical clustering algorithm. Ini-

tially every single sample is a cluster. Dissimilarities between every pair of clus-

ters are calculated and then the merging phase begins. Most similar clusters are

merged and then the new dissimilarities between the newly created cluster and

the other clusters are calculated. After that, the merging occurs again. The

algorithm continues this operation (dissimilarity calculation and the merging)

until the dissimilarity between the most similar clusters becomes larger than

the stopping criteria or until the desired number of clusters is reached.

We decided to use AGNES for clustering of bit vectors since it allows the

usage of any dissimilarity function without needing an extension to its base

algorithm.

Cluster dissimilarities are calculated by a dissimilarity function, but nor-

mally clusters contain more than one sample. As the dissimilarity functions

offer only the dissimilarity between sample pairs, we will surely need a linkage

metric ([26], [27]) to calculate the distance between two clusters.

There are three widely used linkage metrics: dmin, dmax and davg.

• dmin(Ci, Cj) = minx∈Ci,y∈Cj{dissimilarity(x, y)}

• dmax(Ci, Cj) = maxx∈Ci,y∈Cj
{dissimilarity(x, y)}

• davg(Ci, Cj) = 1
|Ci||Cj |

∑
x∈Ci

∑
y∈Cj

dissimilarity(x, y)

where Ci and Cj are two different clusters and dissimilarity() is the dissim-

ilarity function we choose.

dmin (single linkage) is not generally preferred because of its chaining effect.

Single linkage cause clusters to be merged in the presence of only one very

similar sample pair which results in this “chaining phenomenon”.

6

dmax (complete linkage) works better than dmin generally because of the

absence of chaining phenomenon, but it is vulnerable to outliers.

davg (average linkage) is like a balance between single linkage and complete

linkage.

As after the merging phase it is impossible to reverse this process or swap

cluster contents, the clustering quality can deteriorate. Our experiments did

not show this kind of weakness but it is a possibility to take into consideration.

2.2 Related Work

Extensive research has been conducted on periodic pattern mining. Han et. al.

[19] propose algorithms for mining partial periodic patterns from time series

data. In [20], the ideas proposed in [19] are further extended and an efficient

and scalable algorithm that uses a novel tree structure (max-subpattern tree)

is proposed.

In [33], a technique for mining periodic patterns from event sequences is

proposed which was later extended in [34] for allowing the mining of partial

periodic patterns. In [12] and [13], authors propose methods for detecting pe-

riodicity in the event sequences by using convolution-like formulas which were

not considered in earlier studies.

In a recent work, Cao et al. propose algorithms for mining periodic patterns

in spatio-temporal sequences. They describe a discretization method for location

information and then use an extended form of the technique proposed in [20] for

doing the mining in the finest time granularity. The problem with this approach

is that it overlooks patterns at coarser time granularities and to the best of our

knowledge our work is the first one addressing this problem.

In [15], algorithms for mining sequential “important place” patterns with

similar time constraints between visits are proposed. Two of the algorithms

that are proposed in [15] are extensions of the work in [16]. In our work, we

similarly choose to use the concept of important places for the discretization

of the location data, but notice that we mine periodic patterns and consider

7

different time granularities. The discovery of important places is an ongoing

research area. Authors of [25] developed a system specific to GPS data. They

infer that a place is important if there are several signal losses in approximately

same place. They assume that a signal loss shows that the object is in a building,

but they overlook the fact that it is possible to have signal losses without a stay

in a building (such as in the case where the battery of GPS device runs low or

a disconnection from the satellite occurs). Furthermore, open area important

places will be missed with this approach. In [1], the time information is omitted

from the spatio-temporal sequence and a variant of k-means is applied to the

spatial data. The approach of [1] is outperformed by the algorithm proposed

in [36] where authors apply a density-based clustering algorithm (DJ-Cluster)

to the spatial data for the extraction of important places. The importance of

[36] is that the authors offer metrics for the evaluation of performance for the

extraction of important places. Notice that studies before [36] are not evaluated

for their performance of important places discovery. [37] contains experiments

conducted on 24 people of different life stages using the technique in [36]. In

our work, we use a density-based clustering method and respect periodicity and

time information of coarser granularity while extracting important places.

3 Problem Formulation

In this section, we formulate the problem that we chose to address. First, we will

concisely give the problem definition and then the overview of our algorithms

together with the definitions pertaining to temporal concepts. After that, the

preliminary definitions will be provided and later, the problem will be defined

in detail.

Our problem is to discover patterns from a spatio-temporal sequence which

occur with a frequency greater than a threshold at a given time granularity and

period. First, we partition the spatio-temporal sequence to different periods.

For instance, if the time granularity is day and we are working with a period of

8

7, then we collect each Monday in a single bucket and continue the collection

until there are 7 buckets in total. Later, we process the location measurements

and extract important places related to the corresponding position of the pe-

riod. For instance, we take the location measurements of Mondays and extract

important places for Mondays. After that, each element of the granularity in

the spatio-temporal sequence is processed such that every element can be rep-

resented in terms of important place visits. For instance, the first Monday is

represented by a bit vector which depicts existence and non-existence of visits

to important places extracted from the Monday bucket. Later, each position

of the period is inspected separately and similar representations are grouped

together by clustering of bit vectors and they are labeled. For instance, if the

first and second Mondays are similar with respect to visited places, then they

will be grouped together and tagged with the same label. After that, the ini-

tial spatio-temporal sequence can be represented with a smaller sequence that

is discretized and then the new sequence can be easily mined with previously

proposed techniques.

3.1 Temporal Concept Definitions

In this work, we adopt the temporal concepts defined in [4]. We will use the set

time domain (denoted as (R,≤) where R is the set of real numbers and ≤ is a

total order on R) as the set of primitive temporal entities that is used to define

temporal concepts. R is used as the set of time instants in the time domain

(R,≤).

Definition 3.1 A time granularity g is a mapping from the set of non-negative

integers (the time ticks) to 2R (subsets of the time domain) that satisfies the

following conditions for all positive integers i, j such that i < j:

1. If g(i) and g(j) are both non-empty, then each element in g(i) is less than

any element in g(j).

2. If g(i) is an empty set, then g(j) must be an empty set too.

9

Let’s see the first property with an example.

Example 3.1 Let’s assume that, we are using year since 1900 granularity. All

elements in year since 1900(0) will be less than year since 1900(1) because ev-

ery single time element in year 1900 (year since 1900(0)) will be less than every

single element in year 1901 (year since 1900(1)).

Frequently used (and intuitive) time granularities such as hour, day, week,

month, year all satisfy the above conditions. When working with time granular-

ities, we will need a bottom granularity which requires a temporal relationship

such as “finer than”.

Definition 3.2 A granularity g is finer than a granularity h if for each index

i of g, there is an index j such that g(i) ⊆ h(j).

For example, hour is finer than day and month is finer than year. Finer than

relationship gives us the base for the bottom granularity definition.

Definition 3.3 Given a granularity relation ≺ and a set of granularities defined

with the same time domain, a granularity g in the set is the bottom granularity

with respect to ≺, if g ≺ h for every granularity h in the set.

Example 3.2 In {minute, hour, day, week,month, year} set and finer than be-

ing the temporal relationship, we can define minute as the bottom granularity

because minute is finer than any time granularity in this set.

Definition 3.4 A tick of a granularity g is a nonempty subset g(i) where i is

its index. The terms ”tick of the bottom granularity” and “timestamp” will be

used interchangeably.

Bottom granularity and tick definitions will be useful in granularity conver-

sions. Every tick g(z) of the bottom granularity g can be mapped to a unique

tick h(z′) of one of the granularities h in the time granularity set. dzehg = z′ de-

notes the granularity conversion where g and h are both time granularities and

10

g(z) ⊆ h(z′). For instance, d2eyear
minute will return the year value that contains

the second minute.

As the time-related definitions are given, we will now give preliminary defi-

nitions that will be needed throughout the paper.

3.2 Preliminary Definitions

The sequence of location-timestamp pairs is denoted by S = {(l0, t0), (l1, t1),

(l2, t2), ..., (ln−1, tn−1)} where ti is the timestamp and li is the location compo-

nent corresponding to the timestamp. For example, this sequence can be Bob’s

traced movement during year 2006; Sbob = {((1, 3), 0), ((1, 4), 1), ((2, 5), 2),

((3, 6), 3)...}. At the zeroth timestamp, Bob was at location (1, 3), at the first

one he was at location (1, 4) so on.

From now on, we will use S as the abbreviation of the spatio-temporal

sequence of the bottom granularity. Furthermore, we will omit the bottom

granularity information in de operator as in [5]. In addition, we will use the

expression “coarser granularity” instead of “a new granularity coarser than the

bottom granularity”.

Definition 3.5 For a coarser time granularity g, the time set with index k is

defined as TSg
k = {ti, ti+1, ..., tj} such that dtieg = dti+1eg = dti+2eg = ... =

dtjeg = k and there is no timestamp t′ 6∈ TSg
k such that dt′eg = k.

Example 3.3 If g is day and location measurements are made every hour in S

(ti+1− ti = 1 where t is timestamp), then TSday
2 will contain all the timestamps

contained in the second day which will be equal to 24 timestamps in this case.

Notice that the index of the time set begins from 0 just like the index in the time

granularities.

We assume that there is a location measurement for each timestamp in S, so

it is possible to denote the location measurement corresponding to a timestamp

ti by li.

11

Definition 3.6 For a coarser time granularity g, the location set of index k is

defined as LSg
k = {li | ti ∈ TSg

k}.

Example 3.4 If we continue from the previous example, we will have LSday
2

equal to the set of location measurements belonging to second group of 24 times-

tamps (beginning from timestamp 48 and ending in timestamp 71) contained in

S. Notice that LSday
0 is the zeroth group of 24 timestamps.

Definition 3.7 Let T be the mining period and g be the coarser granularity.

The set that groups all location sets of position p of the period is defined as

Lg
p =

⋃
LSg

i for all i such that i mod T = p.

Example 3.5 Assuming that the period is 7, Lg
2 = LSg

2 ∪LSg
9 ∪ ...∪LSg

j where

j is the largest i of the spatio-temporal sequence that complies with i mod 7 = 2.

3.3 Problem Definition

Given a minimum support value, min sup ∈ [0, 1], a sequence of location-

timestamp pairs S, a period T and a time granularity g, our problem is to

discover patterns that repeat themselves with the period of T time ticks in time

granularity g with a frequency greater than the min sup value. Notice that,

two symbols (T , g) will be used throughout the paper as the abbreviations to

their definitions above.

Time information of the bottom granularity will be used for slicing S into

location sets. After that, this time information will not be needed. For instance,

if we are working on granularity g, we will first build time sets of granularity g

from S. Later, we will derive location sets corresponding to these time sets and

then S will be turned into a sequence of location sets.

Example 3.6 Assume that our sequence is S = {((0, 0), 11), ((1, 2), 23),

((2, 3), 35), ((2, 4), 47), ((3, 5), 59), ((3, 7), 71), ((6, 7), 83), ((6, 8), 95)} where

the bottom granularity is hour (i.e. one location measurement per 12 hours). In

order to analyze S in granularity day, first, we will build time sets for the day

12

granularity. TSday
0 = {11, 23}, TSday

1 = {35, 47}, TSday
2 = {59, 71}, TSday

3 =

{83, 95} will be obtained. LSday
0 = {(0, 0), (1, 2)}, LSday

1 = {(2, 3), (2, 4)},

LSday
2 = {(3, 5), (3, 7)}, LSday

3 = {(6, 7), (6, 8)} will be extracted. This way,

we transform S into a sequence of location sets LSday
0 LSday

1 LSday
2 LSday

3 .

Definition 3.8 Important places are regions where the traced object visits fre-

quently and spends a fair amount of time.

A discrete representation is the discretized form of a location set obtained

using the notion of important places. We will briefly explain how this discrete

representation describes the data.

Example 3.7 Assume that we have a location set LSday
0 which is depicted in

Figure 1. Three rectangles in the figure are highlighting the important places.

We will obtain a discrete representation from the location set using important

places.

The discrete representations are bit vectors where the contained binary val-

ues are separated with “,” and delimited by “<” and “>” . This discrete repre-

sentation is obtained by inspecting the existence and non-existence of visits to

important places. Notice that a binary value in the bit vector represents a visit

(1) or a lack of visit (0) to the corresponding important place.

Example 3.8 In Figure 2, we enumerated important places (IP0, IP1 and

IP2). Location set LSday
0 will be represented with the bit vector < 1, 0, 1 >,

because there is a visit to the zeroth (with index 0) and to the second important

place (with index 2), but the first important place (with index 1) is not visited

during the zeroth day.

We previously explained that S can be considered as a sequence of location

sets. After a discrete representation is derived from each location set, a sequence

of discrete representations denoted as Sg will be obtained. Notice that for each

index in the location set sequence, we have a corresponding discrete represen-

13

tation with the same index (i.e. LSg
i → ri). Notice that r is the abbreviation

of discrete representation.

Definition 3.9 Segments (of Sg) are defined as a sequence

“rT×i rT×i+1 rT×i+2 .. rT×i+T−1” where i = 0, 1, ..., (b j+1
T c − 1) assuming that

rj is the discrete representation corresponding to the last location set available

for S in granularity g.

Segments of period of 4 can be seen in Figure 3.

Definition 3.10 Periodic pattern with period T is a sequence of T elements

where an element can be a single discrete representation, a set of discrete rep-

resentations, or a wildcard “*” which implies the possibility of any value for the

discrete representation.

Example 3.9 “r1{r2, r4}∗” is a periodic pattern of period 3. There is a discrete

representation in the zeroth position, a set of discrete representations in the first

position and “*” in the second position of the period.

For a segment s (pattern p respectively), si (pi respectively) is the ith position

of s (p respectively).

Definition 3.11 In our first technique, a segment s complies with a pattern

p if bit vector in si is the same with bit vector of pi or pi = ∗ (for each i =

0, 1, 2, ..., T − 1). In the second technique, a segment s complies with a pattern

p if bit vector in si is similar1 to bit vector of pi or pi = ∗ (for each i =

0, 1, 2, ..., T − 1).

Definition 3.12 A discrete representation set (DRS) is the set that groups all

discrete representations of a single position of the period T. Formally, DRSg
z =⋃

i mod T=z ri for all i available in Sg sequence.

A periodic pattern’s length is the count of discrete representations in it. For

instance, “rt ∗ rc rh ∗” has period equal to 5, and length equal to 3.
1The similarity concept will be defined later

14

Definition 3.13 A periodic pattern of length k is called k − pattern.

Definition 3.14 p′ is a subpattern of p, if they both have the same period T

and either p′i ⊆ pi or p′i = ∗ for all i such that 0 ≤ i < T .

Example 3.10 If p = r1{r2, r3}∗, then p has six subpatterns such as “r1 ∗ ∗”,

“∗r2∗”, “∗r3∗”, “r1r2∗”, “r1r3∗”, “∗{r2, r3}∗”.

Subpatterns are more general than patterns. So the set of segments in the

sequence S that comply with a certain pattern p will be a subset of the set of

segments that comply with the subpatterns of p.

4 Mining of the Maximal Frequent Patterns

Mining of the maximal frequent patterns is completed in two phases; the first

phase consists of the mining of frequent 1-patterns and the second phase consists

of the construction of a max-subpattern tree and the extraction of frequent

nodes (patterns) from the tree. An illustration that describes the essence of the

proposed mining techniques can be seen in Figure 4.

4.1 Finding Frequent 1-Patterns

We will begin this part of the paper by explaining two steps that take place

before the discretization process. These two steps are (i) elimination of loca-

tion measurements belonging to movement with high speed, (ii) extraction of

important places.

4.1.1 Extraction of Important Places

As our choice is to describe several location measurements in terms of important

places visits, we need this phase which will give us the needed base for the

generation of discrete representations in our techniques.

One of the most interesting work for the extraction of important places is

[36] as we previously declared. In [36], a density-based clustering algorithm

15

(DJ-Cluster) is used for clustering the spatial data and clusters are treated

as important places. In our work, we partition the spatio-temporal sequence

such that the resulting datasets will respect the time information of coarser

granularity and periodicity. After that, we apply DBSCAN instead of DJ-

Cluster because both algorithms are comparable in performance and DBSCAN

is widely used.

Only two parameter values (values for MinPts and EPS) are needed by

DBSCAN. MinPts is the minimum number of objects that must be found

within EPS distance of an object x for x to be a core object. Remember

that the clusters in DBSCAN consist of core objects (such as x) and non-core

objects which are reachable from core objects. As our techniques do the mining

at different granularities, setting MinPTS to 3 (MinPTS = 2k−1 for data with

k dimensions as suggested in [31]) does not give the best clustering result in all

cases. On the other hand, we claim that EPS can be easily set in our case due

to the fact that, in general, we want to find buildings as clusters –which occupies

an average amount of area on the map– but value of the MinPTS parameter

has to be experimented. In our work, we propose a preprocessing method that

reduces user errors that can occur in the MinPTS selection. Reducing errors

in parameter selection is important since DBSCAN is sensitive towards these

parameters.

For finding important places, we apply DBSCAN to each of Lg
i separately

where i = 0, ..., T − 1 since we want to extract important places belonging to

different positions of the period and to consider the time granularity at the

same time. For example, Robin visits the shopping mall every Friday night.

The shopping mall probably will not form a dense cluster if we consider all

locations in SRobin, because he was in this place for only few hours and for a

single day in the whole week. Assume that we mine at day granularity with a

period of 7 which means that we want to find similar Mondays or Tuesdays...

etc. In the case of Robin’s example, we will surely see that the shopping mall

forms a dense cluster if we use Lday
4 (location measurements of Fridays) to obtain

16

important places, because the shopping mall will form a dense region since it is

visited every single Friday. As the shopping mall forms a dense region, it will

be treated as an important place just like all other dense regions.

Time Complexity Analysis 4.1 For n objects, the time complexity of DB-

SCAN is O(n log n) with a spatial index such as R-tree [17] and R*-tree [2].

In the worst case, we run DBSCAN with N
T location measurements for T times

where N is equal to |S| and T is the period. Thus, the worst case complexity of

this step is T ×O(N
T log N

T) = O(N log N
T). Notice that, in reality, we will have

less location measurements in Lg
i sets than N

T because there is a preprocessing

step that will omit several locations of these sets before DBSCAN phase takes

place.

4.1.2 Elimination of High Speed Movement Data

During the extraction of important places, we use every single location measure-

ment available in S. The problem with this approach is that we do not actually

need a large number of location measurements. Eliminating the location mea-

surements belonging to high speed movement and using only the ones with

stationary-like tendencies will speed up our techniques and, most importantly,

it will work as a safety net for the erratic selection of parameters in DBSCAN.

Assume that there is a traffic light in the road that the traced person’s car

frequently follows. He sometimes stops at the traffic light and sometimes does

not. With a bad selection of MinPts value, DBSCAN can not distinguish the

difference between the densities of “home” and “traffic light” which means that

it will mark both of them as important places. But if we apply our preprocessing

step, then the density near the traffic light will get lower which in consequence

will help DBSCAN detect that the traffic light is not a region as dense as home.

We propose an algorithm for eliminating high speed movement data which

basically finds two timestamps ti and ti+2 with a single timestamp ti+1 between

them and calculate the Euclidian distances distance(li, li+1) and

distance(li+1, li+2). If these distances are both bigger than a threshold, then we

17

can omit the location measurement li+1. The fact that these distance are both

bigger than a threshold means that between ti and ti+2, the object travels with

a high enough speed to be eliminated. For instance, a person will not move with

more than 40 km/h speed inside an important place such as home, work, golf

club, pub, and so on. The proposed algorithm can be found as Algorithm 1.

We define high speed (low speed) movement as a movement with speed larger

(smaller) than the input threshold. We will now explain how we obtain the idea

used in the algorithm with a case study. Notice that [36] applies a preprocessing

step which omits li+1 if distance(li, li+1) > 0. Our case study will reveal the

problem of omitting li+1 after the inspection of a single distance. Furthermore,

using 0 as the threshold can be risky because the traced object may not stop

in an important place. For instance, if Bob spends some time in the park, we

can not be sure that he will sit on a bench. Maybe he runs during all his stay

in the park.

Algorithm 1 Algorithm for elimination of high speed movement data (Input:
The set of all locations D, Threshold / Output: The new set of all locations
D′)

dist1← distance(l0, l1)
dist2← distance(l1, l2)
for i from 3 to n do

if (dist1 > Threshold ∧ dist2 > Threshold) then
removeFromD(li−2)

end if
dist1← dist2
dist2← distance(li−1, li)

end for

After joining every pair of location measurements belonging to consecutive

timestamps with a line segment, and with the assumption that the difference

between consecutive timestamps is fixed, we can name high speed movement

(between consecutive timestamps) as “long segments” and low speed movement

(between consecutive timestamps) as “short segments”. For simplicity, we use

only two segments in our case study where there are 4 different possibilities: (i)

short segment after short segment (Figure 5(a)), (ii) short segment after long

18

segment (Figure 5(b)), (iii) long segment after short segment (Figure 5(c)), (iv)

long segment after long segment (Figure 5(d)).

Without loss of generality, we assume that movement happens from left to

right in all cases. We want to omit the location measurement in the middle

(denoted by l1) in this case study.

The first case is trivial since, if we omit l1, it is obvious that we decrease the

density of an important place. In the second case, we should not omit l1 even

though this point is part of the high speed movement (part of a long segment).

Otherwise, the density of the important place (depicted as a box) can decrease

and this decrease can cripple our accuracy. Notice that this is the case where the

preprocessing in [36] is problematic. The third case is similar to the second case,

but this time we cannot eliminate the beginning point of a long segment (again

a point in the middle) since it is preceded by a short segment. Otherwise, we

can lose some density in the important place (depicted again as a box). In three

previous cases, we see that we should not omit the middle point of two segments

if at least one of them is short. The fourth case is the only case that allows

the elimination of l1 without the risk of losing necessary location measurements.

Since this point is not close to any other neighbor point, we know that it cannot

contribute to the density of an important place.

There is another issue to consider while we think about speeds of moving

objects. In most of the studies about trajectories, it is generally seen that a

linear interpolation is applied between two points belonging to two consecutive

timestamps which is the shortest path that can be obtained using these points

(Figure 5(e)). So, the trajectory of the object will be built from location-

timestamp pairs. This approach has an essential flaw; it is probable that between

two consecutive timestamps a longer road like the one in the Figure 5(f) takes

place. With the assumption of linear interpolation between consecutive points,

it is possible that our algorithm misses some location points belonging to high

speed movement. The reason is that a short segment can be in reality a path

like the one in Figure 5(f). Two points which delimits this short segment will be

19

treated like a part of movement with low speed and our method will not omit

them. On the other hand, it is sure that any point omitted by our method is a

location point belonging to a high speed movement. As there is not a shorter

path between two points than a straight line joining them, every long segment

treated by our algorithm as a part of high speed movement is at least as long as

our algorithm considered it in reality which implies that a long segment built

with linear approximation always characterizes a “real” high speed movement.

Algorithm 1 has the time complexity of O(N) where N is the number of location

points.

Our preprocessing is more beneficial when the traced object travels with high

speed most of the time. Generally the traced objects travel with high speed for

a considerable amount of time which justifies our preprocessing step.

After the preprocessing step and the extraction of important places by ap-

plying DBSCAN to Lg
i set for each i ∈ {0, 1, ..., T − 1} separately, we obtain

important places belonging to each i position of the period.

4.1.3 Mining Algorithms

We propose two algorithms based on features obtained from important places;

1. MINIM which does exact matching of the binary features

2. µPIN which does approximate matching of the binary features

There is a chance that exact matching of binary features produces frequent

1-patterns with very low support, thus an approximation (such as we propose

in µPIN) can be very useful.

After the preprocessing and the extraction of important places steps, we

obtain important places for every i position of the period (i from 0 to T − 1).

Later, we enumerate important places. The enumeration begins from 0 each

time we begin enumerating important places of a new position of the period.

After the enumeration of all important places, we will generate the discrete

representations from the location sets. Each LSg
i of S will be represented by a

20

bit vector. If there is a location measurement of LSg
i spatially contained in the

important place with label j, then jth offset of the bit vector will be replaced

with 1. If there are not any location measurements of LSg
i contained in the

important place with label j, then jth offset of the bit vector will be replaced

with 0. Notice that, while these bit vectors are generated, only the important

places of the corresponding position of the period are used.

We obtain Sg after changing every LSg
i of S to a bit vector and keeping the

order intact. For instance, from LSg
0LSg

1LSg
2LSg

3LSg
4LSg

5 , a sequence Sg such

as r0r1r2r3r4r5 will be obtained where each ri is a bit vector extracted from

LSg
i .

Example 4.1 Assume that we have important places with label 0, 1, 2 for the

zeroth position of the period. After we take a look at LS0, we see that important

places with label 0 and 1 are visited but the important place with label 2 is not.

Then LS0 will be represented by < 1, 1, 0 >. If we take a look at LS7, we see

that important places with label 0 and 2 is visited, but the one with label 1 is not

visited. Then LS7 will be represented by < 1, 0, 1 >.

As the counting of frequent 1-patterns begins, the difference between MINIM

and µPIN appears.

For MINIM, we will separate each (i) position of the period by using discrete

representation sets (DRSg
i) and group the same bit vector contents in these sets

together. We do the counting in DRSg
i set for each i from 0 to T −1 separately.

Groups of bit vectors with the same content and with more than min sup ×(
b |S

g|
T c

)
elements inside will form frequent 1-patterns. All the elements in these

largely populated clusters will be labeled with a new label given to the discrete

representation they contain while the elements of clusters of size less than the

above threshold will be labeled with “*”. Thus, SL will be obtained. Notice that

label here refers to the discrete representation in the cluster. Obtaining frequent

1-patterns from the representatives is trivial. For example, for a representative

with label l in the zeroth position of the period where T = 4, “l ∗ ∗ ∗” is a

21

frequent 1-pattern.

Time Complexity Analysis 4.2 MINIM will need two scans over all location

measurements for this phase. The construction of bit vectors from LSg
i will be

completed first. After this information is obtained, we will need again a single

scan to do the counting and to extract frequent 1-patterns which adds O(N) to

total time complexity.

For µPIN, we separate each (i) position of the period by using discrete

representation sets (DRSg
i) and group similar bit vector contents in these sets

together. For the grouping step, we use a hierarchical clustering algorithm,

AGNES, with a binary dissimilarity measure that we tailored for our task.

The motive of designing a binary dissimilarity measure is that previously

proposed dissimilarity measures are not fit for our task. Three major families

of metrics are taken into consideration;

1. Hamming distance [18] with different normalizations (Sokal and Michener

[32], Rogers and Tanimoto [28])

2. Normalized inner product with different normalizations (Russell and Rao

[29], Jaccard and Needham [21], Dice [10], Kulczynski [24])

3. Correlation similarity measures (Yule and Kendall [35])

Definition 4.1 xi will denote the value of bit vector x in its ith offset. Assum-

ing we have two bit vectors x and y, the case where xi = 1 and yi = 1 is the

positive case and the case where xi = 0 and yi = 0 is the negative case. Notice

that x and y are both discrete representations belonging to the same discrete

representation set.

The first and the third type of dissimilarity metric treat both negative and

positive matches equally. The problem with this approach is that in our task,

it is not always meaningful to have a positive case. As our data is about the

presence/absence of important place visits, it is more probable to have a visit

22

to an important place which leads to frequent occurrences of positive cases for

this important place. For instance, “home” is an important place for Tom. We

will see that every Monday Tom visits home. So the bit vectors representing

Mondays will have 1 for the offset of home. As the first and third type of metric

will give the same weight to every feature in bit vectors and as these metrics

treat positive and negative cases equally, positive cases which were trivial will

be treated as if they are as important as negative cases and they will contribute

to similarity as much as any matching case.

An alternative is the second type of metric discussed above. The second

type of metric completely ignores the presence of negative cases, because nega-

tive cases are supposed to be insignificant. In our task, having a positive case can

be considered as insignificant, so it can seem trivial to adapt Jaccard-like metrics

to our task. We will see why this approach can be problematic. For example, as-

sume that we mine on day granularity with T = 7. Two discrete representations

depicting two Mondays monday1 = {1, 1, 1, 0} and monday8 = {1, 1, 1, 1} will

have a dissimilarity equal to 1 (on 1) with the adapted Jaccard metric (Pos-

itive cases are considered insignificant instead of negative cases). If all these

1 values in the zeroth, first and second offset were totally insignificant, then

this approach would have the effect that we desire, but we do not have an idea

about their level of significance; maybe the zeroth one is “home” which means

that the positive case here is totally insignificant, but what if it was “shopping

mall” which has 50% chance of visit? This leads us to question the definition

of significance of positive and negative cases in our task.

Definition 4.2 A match between bit vectors with a value in ith offset of the

bit vector is insignificant if the value is “generally seen” in ith offset of all bit

vectors of the same position of the period.

Notice the similarity of the definition above with the logic of “inverse docu-

ment frequency”[30] where a word gains more weight if it is seen in less docu-

ments.

23

Example 4.2 Assuming that we compare different Mondays, it is usual to see

the value 1 in the “work” offsets. If we were comparing two different bit vectors,

a positive case for the “work” feature would give us very little information about

the similarity of these bit vectors. Consider the inverse case where on both

Mondays, the traced object does not go to work. As it is a rare case, it must

have a large influence in the similarity between these days.

Before the dissimilarity measure, we give the contingency table which can

be seen in Table 1. Notice that the first row and the first column of contingency

table are the possible values of xi and yi where x and y are both bit vectors.

Our dissimilarity measure gives more importance to significant positive /

negative matches and less importance to insignificant ones.

Dissim(x, y) = |b|+|c|
|b|+|c|+

∑
[2(1−λi)si+2λiti]

where si is 1 only when xi = 1 and yi = 1 (positive case), and ti is 1 only when

xi = 0 and yi = 0 (negative case). λi is the weight for ith offset.

It is easy to see that if we set all λ to 1/2 (i.e. both negative and positive cases

are equally important), our measure transforms into Sokal and Michener metric

[32] while if we set all λ to 1 (i.e. the positive cases are totally insignificant), it

transforms into Dice metric.

If we knew the importance level of each offset, we could easily set λi values

in our dissimilarity measure. We previously discuss the direct relation between

the general presence / absence of positive and negative cases and their impact

on the similarity. We use this relation to estimate the λi parameters. Offsets

(important places) of each bit vector in the discrete representation set DRSg
i

are separately scanned for finding the occurrence rates of 1 in each offset, then

these estimates are used as λ values. Obviously, this process has to be repeated

for each i value from 0 to T −1. For instance, assuming that T = 5 and we have

3 discrete representations in DRSg
0 such as r0 =< 1, 0, 1 >, r5 =< 1, 1, 1 >,

r10 =< 1, 0, 0 >, our estimates for each column will be λ0 = (1 + 1 + 1)/3

(occurrence rate of 1 in zeroth offsets), λ1 = (0 + 1 + 0)/3 (occurrence rate of 1

in first offsets), and λ2 = (1 + 1 + 0)/3 (occurrence rate of 1 in second offsets)

24

respectively.

Example 4.3 Assume that we have two Mondays to compare such as monday1 =

{1, 1, 1} and monday8 = {1, 0, 1} and the estimates for the offsets are λ0 =

1, λ1 = 0.5, λ2 = 0.4. If we compare both Mondays, it is immediate to see that

only the first offset is different. If we use our dissimilarity measure, the result

will be 1 / (1 + 2× (1− 1) + 2× (1− 0.4)) ≈ 0.45. As you can see, a matching

on the zeroth offset (with a 100% chance of happening) has no influence on the

similarity between bit vectors. On the other hand, the dissimilarity of the mea-

sure decreased considerably with a significant match in the second offset, because

seeing a positive case in this offset is interesting considering the fact that “1”s

has 40% chance of happening.

After λ values are found, we can begin the clustering using AGNES. But

first, we will try to come up with a method that could guide the user for stop-

ping criteria selection. Assuming we use complete linkage, setting the optimal

stopping value for the clustering task is difficult in adapted Jaccard distance,

but that is not the same case with normalized Hamming distance. User can

easily set a stopping value using his maximum allowed number of non-matching

columns (|b+c|). For instance, if he allows that, at most 2 offsets can be different

and there are 6 features in bit vectors, then 2
6 will be the stopping criteria.

Setting the optimal value for our dissimilarity measure is not as intuitive as

it is in the normalized Hamming distance case, so we should propose a method

for helping the user. Grid search can be run for finding this optimal value, but

is it really necessary to use all (0, 1) interval during the grid search? From the

answer of this question, we gain inspiration for an analytical way to find the

most narrow interval for the grid search. For this task, we will first take the

maximum number of difference (|b+c|) allowed by the user (as in the normalized

Hamming distance case) as input v. Later, using the estimates of every offset

(λ values), we will find a lower bound for only one difference (|b| = 1 or |c| = 1)

case and then an upper bound for the v difference case (|b| + |c| = v). So,

25

[lowerbound, upperbound] will be our interval for the grid search.

First, we generate two sequences using λ values. The sequence min seq is

built using the minimum cases for each λi from i = 0 to the total number of

important places belonging to the actual position of the period. i.e., if λi is

more than 50%, we will use (1 − λi) else we will use λi itself. Notice that the

ith element in min seq is λi or 1 − λi (i.e. λ order is intact). The weights in

min seq are delimited by “<” and “>”.

Weights in min seq have the minimal effect on the decrease of dissimilarity.

Using these weights and input v of the user, we will find the upper bound. It is

clear that we can find it by (i) choosing v different elements with largest values

from min seq and (ii) supposing that these v elements are non-matching offsets

between two bit vectors. After that, we will use the weights in min seq that are

not used in the previous step to obtain the dissimilarity of the most dissimilar

objects available for the input v. The upper bound is calculated with v
v+2sum

where sum is the sum of (k− v) smallest weights in min seq supposing we have

k offsets in bit vectors. In this section, we will use k as the total number of

offsets in bit vectors (i.e. number of important places).

Now, a similar sequence (max seq) has to be found for the lower bound.

ith element z in min seq has a counterpart 1 − z in ith offset of max seq.

i.e. max seq is a sequence of weights with the possible largest contribution of

similarity. The weights in max seq are delimited by “<” and “>”.

We will choose the minimum weight in max seq and suppose that its offset

is the only offset where bit vectors do not match (i.e. if two bit vectors are x

and y, xi = 0 ∧ yi = 1 or xi = 1 ∧ yi = 0). After that, we will use all weights

that are not used in max seq in the previous step, and then we will obtain the

dissimilarity value for the most similar objects that are bound by the “1 offset

of difference” constraint. The lower bound is 1
1+2sum2

where sum2 is the sum

of all weights in max seq minus the minimum weight in max seq.

Example 4.4 Assume that λ0 = 0.9, λ1 = 0.5, λ2 = 0.4, λ3 = 0.8, λ4 = 0.6 are

the weights. Suppose that the user wants at most 2 differences in offsets (i.e. two

26

offsets that does not match, v = 2). Then min seq =< 0.1, 0.5, 0.4, 0.2, 0.4 >

and max seq =< 0.9, 0.5, 0.6, 0.8, 0.6 >. For the upper bound, we use min seq

and v. We choose 3 (v − k) smallest elements from min seq. {0.1, 0.2, 0.4}

are the smallest ones which will form sum. The value of the upper bound

is 2
2+2(0.1+0.4+0.2) = 0.59. The lower bound uses max seq and its value is

1
1+2(0.9+0.6+0.8+0.6) = 0.15 where the denominator contains all weights except

the minimum one from max seq. As you can see, (0, 1) is reduced to [0.15, 0.59]

using our approach.

As v takes values closer to k (number of important places), our approach

becomes less beneficial since our upper bound becomes closer to 1. Furthermore,

if the λi values are generally close to extremities like 0 or 1, then again it is less

beneficial to use our approach. Let’s note here that if all the lambda values were

0.5, then our approach’s upper bound gives the same value with the one that is

used as normalized Hamming distance’s stopping criteria (v
k where v = |b|+ |c|).

After the new interval for the stopping criteria is obtained, a grid search can

be run in this interval. Then, the optimal parameter value can be chosen by

using a cluster validation measure such as Dunn’s index ([11], [6]) or Davies-

Bouldin index ([8]). If the user has difficulties in setting v value, a grid search

can be run for the whole (0, 1) interval and the optimal parameter value can be

chosen again with the help of cluster validation measures.

Using AGNES with complete linkage as the linkage function and our dissim-

ilarity measure as the distance function, we cluster each DRSg
i for i from 0 to

T − 1 separately. After the clustering, we will extract clusters with more than

min sup ×
(
b |S

g|
T c

)
elements inside. From these clusters, it is trivial to find

frequent 1-patterns. For instance, for T = 4, and for the zeroth discrete repre-

sentation set (DRSg
0), we find a single largely populated cluster C. After we

find a single representative discrete representation r (bit vector) for the cluster

C, we know that “r ∗ ∗∗” is a frequent 1-pattern.

The dominant bit vector in the cluster will be chosen as the cluster repre-

sentative. Later, we will do the labeling. Discrete representations (bit vectors)

27

which are elements of a largely populated cluster will be labeled with the new

label given to cluster’s representative while the other discrete representations

will be labeled as “∗”. Notice that label here points to the discrete representa-

tion of the cluster representative. After this labeling step, we are ready for the

mining phase on the newly obtained sequence SL.

Time Complexity Analysis 4.3 During the analysis of MINIM, we show that

we need a single scan of database for obtaining bit vectors generated from loca-

tions sets. The estimation of λi values can be completed during this scan. After

that, AGNES will be applied. We have N
h bit vectors in total where |S| = N

and |LSg
i | = h. We will split the total into T (period) parts and apply AGNES

T times. As the complexity of AGNES for n objects is O(n2), the resulting

complexity for the clustering is T ×O
(

N2

h2T 2

)
= O

(
N2

h2T

)
and from h = O(N

T),

the total is equal to O(T).

4.2 Mining of the Frequent Patterns

After frequent 1-patterns are extracted and the labeling is completed, we obtain

SL which is basically a sequence of labels. After that, we will follow the approach

proposed in [20] for the construction of a special tree from the sequence SL and

then, we will apply the counting part of the algorithm of [7]. Notice that both

of these steps are present in both techniques.

There are a few definitions taken from [20] which will be given here for

the sake of completeness, but before that let’s note that definitions of discrete

representations such as “segment”, “periodic pattern”, “length of a pattern”,

“subpattern” can be directly used with labels. The sole difference between

the usage in discrete representations and labels is that the first uses discrete

representations as building blocks while the second uses labels. Notice that we

denote labels as alphabetic characters.

Definition 4.3 A candidate max-pattern Cmax is a pattern generated from fre-

quent 1-patterns by merging them into one if they have non-* values in their

28

different positions (such as “a ∗ ∗” and “∗b∗” merged into “ab∗”) and by build-

ing a set from their content if these non-* values are found in the same positions

in both patterns (such as “a ∗ ∗” and “c ∗ ∗” merged into “{a, c} ∗ ∗”).

For instance, assume that “a ∗ ∗”, “∗b∗”, “∗c∗” and “∗ ∗ d” are frequent

1-patterns. Then, Cmax is a{b, c}d.

For holding patterns and their count in the sequence SL efficiently, Han et

al. propose a novel data structure called max-subpattern tree (which can be

observed at Figure 6) which uses Cmax as its root. Direct children of the root

will be subpatterns of the root that has only one difference of non-* value with

their parent. For instance, for Cmax = a{b, c}d, there are four direct child nodes

such as “∗{b, c}∗”, “acd”, “abd” and “a{b, c}∗”.

All non-root nodes of the tree will have direct child nodes with the same

“loss of a single non-* value” approach. There is a constraint for a node to have

a child though; it has to be a pattern of length 3 at least. It is easy to see the

reason of this constraint. If the pattern is of length 2 then its direct children will

be of length 1 which is not really helpful. Since we know the counts of frequent

1-patterns, we do not need to count them again.

The nodes of the tree has a parent link and child links pointing to the

corresponding nodes.

First, the insertion of the label sequence into the max-subpattern tree (as

in [20]) will take place. Later, traversal of the tree which extracts the frequent

patterns (as in [7]) will be completed.

4.2.1 Insertion Phase

First, the label sequence SL will be inserted into the max-subpattern tree. Every

segment will be processed such as this:

• Beginning from the root, find the node (pattern) that complies with the

segment. This will be done by omitting non-* elements of the root in the

left-to-right order to obtain the desired node. For instance, if Cmax =

29

a{b, c}d, and our segment is “a ∗ d”, then we will follow first the b edge

and then the c edge to reach the “a ∗ d” node.

• If the corresponding node is found, the count associated with it is incre-

mented by one else this means that the corresponding node is not created

yet. So it will be created and initialized with count value equal to 1 and

then its ancestor nodes will be added recursively until the root node is

reached. Notice that the ancestor nodes will be initialized with the count

equal to 0.

From the insertion scheme, we know that each node will have only one

parent while in reality they can have multiple parents. For instance, if the root

is “a{b, c}d”, and we insert the node “∗cd”, we link it to its parent “∗{b, c}d”,

but “acd” is its parent too.

Definition 4.4 Every “real” parent of a node (linked to it or not) is called a

reachable ancestor.

Reachable ancestors of a node are not only direct parents of this node.

Reachable ancestors of a node z are every single node on the road from the

initial node z to the root in the “lattice”. The complexity analysis of this step

can be found in [20].

4.2.2 Traversal Phase

After the whole sequence SL is inserted to the max-subpattern tree, we will

apply the traversal part of the algorithm STPMINE2v2 (proposed by Cao et

al.[7]) which counts the occurrences from top to bottom in breadth-first order.

It is obvious that if we want the “real” count of a node, we have to use the count

of every reachable ancestor it has and sum all these counts. That is due to the

fact that child nodes (subpatterns) are more general than parents (patterns)

and if a segment complies with the parent, it is sure that it will comply with

the child of it.

30

After we apply the algorithm, all patterns with count more than min sup×(
b |S

L|
T c

)
will be extracted. With the approach of Cao et al., only maximal

frequent patterns are mined which means that redundant patterns (frequent

patterns that are subpatterns of frequent maximal patterns) are overlooked.

The complexity analysis of this step can be found in [7].

After the frequent patterns from SL are extracted, discrete representations

pointed by the labels are fetched. Considering a single non-* position of a

pattern (a discrete representation), both techniques return a set of rectangles

depicting locations occupied by visited important places. A pattern of length 3

can be seen in Figure 7. Each subfigure is a single position of the period and

each rectangle in subfigures depict visited important places.

5 Experiments

In this section, we present our experiments conducted on synthetic data. In

Subsection 5.1, we explain our synthetic data generator. In Subsection 5.2, per-

formance gain of the preprocessing step is analyzed and preprocessing step’s

safety net behavior (for erratic parameter selections in DBSCAN) is observed.

This subsection concludes with our experiment on possible loss of information

due to the preprocessing step. In the subsequent subsection, proposed binary

dissimilarity measure is compared with two popular distance metrics for their

precision and recall in clustering using AGNES. In the subsequent subsection,

gain in grid search with our interval narrowing technique is evaluated. In Sub-

section 5.5, the impact of different representations on the accuracy of important

place matching is evaluated. After that, compactness of different representa-

tions is evaluated by comparing the total areas of discrete representations. In

Subsection 5.7, we evaluate our methods’ sensitivity towards their parameters.

Subsection 5.8 evaluates the effectiveness of the proposed techniques. The last

subsection of this section evaluates the efficiency of the proposed techniques.

The overview of all conducted experiments can be seen at Table 2.

31

All experiments are conducted on a notebook that runs Windows XP and

with 1.5 GHz clock speed and 512 MB of RAM. Implementation of the tech-

niques are done in Java programming language. PostgreSQL with PostGIS

extension is used as RDBMS.

5.1 Data Generator

As finding publicly available spatio-temporal data is difficult for privacy reasons,

we choose to use a data generator during our experiments as in the case of [7].

We use the source code of the data generator proposed in [7] and update it

with “waiting time in important places” and “minimum probability of visiting

important places” additions. As in the real life, traced objects spend a fair

amount of time in important places which implies the need for the first extension.

The absence of visits to important places is needed, because otherwise our data

set will not resemble real life data. With the exception of “home”, it is rare to

see a visit to an important place in every location set of the same position of

the period. The updated data generator generates trajectories with patterns in

bottom granularity. Later, these trajectories are grouped such that the whole

data will contain a pattern at the coarser granularity. So, the generated data

set contains patterns in bottom granularity as well as patterns in the coarser

granularity. This way, we were able to generate synthetic data sets that are

closer to real life data.

From now on, we will use the expression “delay values” instead of “wait-

ing times in important places”. Furthermore, positions that contain visits to

important places in the bottom granularity are called “periodic slots” while

“non-periodic slots” denote positions that does not contain important place

visits.

We will now explain the pattern generation at the bottom granularity. No-

tice that everything that will be explained about this generation is from [7]

excluding our “waiting time in important places” and “minimum probability of

visiting important places” extensions. For the sake of completeness, the gener-

32

ator from [7] is given in detail next to our extensions. Interesting parameters of

the generator in [7] such as period and ratio of periodic slots are fixed. Period is

fixed to 24. Without loss of generality, we assume that the bottom granularity is

hour, so with a period of 24, we were able to generate a single day with periodic

patterns at hour granularity. Ratio of periodic slots is fixed to 75% which is

very similar to real life behavior, because we assume that, in general, 3
4 of our

day is spent in important places. Consider two cases; a student which spends

8 hours at dorm, 5 − 6 hours at class, and 1 − 2 hours at his favorite coffee

shop. Assuming these places are important places for him, approximately 75%

of his day is spent in important places. Now consider a worker whose days gen-

erally consist of 8 hours spent at home and 9 hours spent at the office. Again,

approximately 75% of his day is spent in important places.

As a beginning step to the data generation, the delay values of periodic

slots are randomly chosen from the interval [MinDelay,MaxDelay]. We set

MinDelay to 2 (hours) and MaxDelay to 7 (hours) to mimic real life, because

in daily life, we spend [2, 7] hours in most of the important places such as home

(probably 7− 8 hours), class (probably 2 to 6 hours), favorite pub (probably 2

to 4 hours), gym (probably 1−2 hours) and so on. Although cultural differences

exist in this case (such as Turks spending much more time in a coffee shop than

Americans, or French spending much more time in a restaurant than Koreans),

we choose using the above interval.

After the delay values are set, the pattern centers for periodic slots (CenterPi)

are created randomly. A pattern center can be considered as the centroid of an

important place. The distance between pattern centers are proportional to their

difference in time.

After these steps, the generation of trajectories begins:

• If the actual slot Pi is a periodic one (which means a visit to an important

place), then “minimum probability of visiting an important place” is used

to decide if this periodic pattern will be visited or not. If it must be

visited, a number of locations (equal to the delay value of the slot) in α

33

neighborhood of CenterPi
are randomly chosen as location measurements.

This part tries to simulate a visit to an important place and does not force

an exact location for each visit. In a real life example, it can be thought as

your visit of home which contains times spent in the kitchen, living room

so on.

• If the actual slot Pj is a non-periodic one, then the object moves towards

the pattern center of the next periodic slot (the centroid of the next impor-

tant place). To obtain this effect, the pattern center of the previous peri-

odic time slot (CenterPh
) and the pattern center of the next periodic time

slot (CenterPm
) are found. Then step size ss = distance(CenterPh

,CenterPm)

|tPh
−tPm |

is calculated. ss is the Euclidian distance between previous and next pat-

tern centers divided by the temporal distance between the periodic slots.

The object moves towards the next pattern center (CenterPm
) with step

size of ss. For abstaining from generating undesired periodic patterns us-

ing the step size and its current angle, we will distort the angle by adding

to it a random degree from [−180
π , 180

π] interval and the step size by mul-

tiplying it with a random number from [0.8, 1.5] interval. In a real life

example, this move can be thought as a travel from home to work.

The parameters pertaining to the coarser granularity are;

1. Time granularity (Day, Week, Month, Y ear)

2. Number of segments in coarser granularity (nos)

3. Period (T) of the coarser granularity

We generate T different types of day content such that, in total, they can

form the desired number of segments (nos). After that, we will do the parti-

tioning of the data and obtain a data set with patterns at coarser granularities.

As a time tick of all proposed time granularities can be formed by grouping

time ticks of granularity day together, it is straightforward to build the content

of a coarser granularity’s time tick. All we have to do is to group enough day

34

trajectories of the same type such that their time total is equal to a time tick

of coarser granularity. For instance, if we work at week granularity, we have to

group 7 days of generated trajectories of the same type. After the contents of

the coarser granularity’s time ticks are prepared, they are partitioned such that

a time tick corresponding to ith position of the pattern (of coarser granularity)

will contain trajectories of type i (i.e. each position of the period T will contain

different types of trajectories).

One of the trajectories (generated for a single position of the period) can

be seen in Figure 8. Densely populated regions are important places for this

position of the period.

5.2 Evaluation of High Speed Movement Data Elimina-

tion

Elimination of high speed movement data results in performance gain and acts as

a safety net for potential errors that can occur during the selection of parameters

for DBSCAN. To validate our method, we generate 4 segments with period of

3 and with granularity equal to week. As one location point is generated per

hour, we have 24 (hours) ×7 (days in a week) ×4 (segments) ×3 (period) = 2016

location-timestamp pairs in S sequence.

First, we will observe the safety net behavior by giving wrong parameter

values to DBSCAN on purpose. EPS parameter of DBSCAN is set to 6 and

MinPTS is set to values such as 3, 5, 7, 10 although we knew that these

MinPTS values are far from the optimal value (MinPTS should be close to

20). As a result, lots of location points which are not related to important places

are tagged as if they are. As it is obvious, working with these badly formed

clusters will be problematic in many ways. Later, we apply our preprocessing

method to the same data set and omit location measurements of high speed

movement and then apply the clustering. Even with low MinPTS values such

as 3, we see that every single location point tagged as a part of important place

is in reality part of an important place which proves our preprocessing method’s

35

safety net behavior.

There are two other evaluations that needs to be done. The gain in perfor-

mance and the loss of accuracy due to our preprocessing has to be calculated.

We previously stated that the gain in performance depends totally on the per-

centage of high speed travels in the spatio-temporal sequence. So we change the

parameter that effects the total time spent on important places and evaluate

the results.

32 segments of data are generated using day as the time granularity, 4 as the

period value (|S| = 3072). Later, we try different values of “total time spent

on important places” and calculate the gain in performance in the extraction

of important places phase. The results can be seen in the Table 3. Percentage

values in the first row are minimum percentage of time spent on important

places to total time. The performance gain is calculated by

gain = timep −timep

timep
× 100 where timep is the total time spent on the

DBSCAN phase after preprocessing and timep is the total time spent on the

DBSCAN phase without preprocessing.

Obtained results prove that as the object spends more time with high speed

movement as this phase will be beneficial. Two extremities in percentage are

35% and 80%, because less than 35% (less than 8 hours spent in important

places; even an 8 hours sleep at home is not possible) and more than 80% of

time spent on important places does not seem to mimic real life behavior. In

Subsection 5.1, we argued that 75% is the probable percentage for most people.

The other experiment to be conducted is the evaluation pertaining to the

loss of necessary location points due to our preprocessing method. For this

task, we first extract the location measurements that are spatially contained

in important places. These location measurements will be used as the testset.

Later, we apply our preprocessing and do the extraction of important places on

the previous data set. Then we check if the results after the extraction match

with the testset. Comparison of the result with the testset shows no loss in the

location measurements. The dataset used for the experiment has day as the

36

time granularity, 7 as the period, 50% chance of visiting an important place. 16

segments with these parameters were generated (|S| = 2688).

5.3 Evaluation of the Binary Dissimilarity Measure

The difficulty with this evaluation is that a dataset with bit vectors depicting

important place visits has to be used and no such dataset is publicly available.

So we had to design a binary data generator.

In our data generator, the overall frequency of 1s in a single offset depends

on the input value and all offsets are supposed to be uncorrelated. That is, we

give frequency values to different offsets (important places) as input and these

frequencies do not have an effect on each other.

The bit vector data is generated. Later, AGNES is run with two popular

binary metrics and our dissimilarity measure. After that, the results will be

inspected with the right clustering that is done manually. To simplify manual

clustering step, we generated a small dataset of 20 bit vectors. Four columns

with different 1 frequencies are generated. The frequency of 1s is 90% for the

zeroth column, 90% for the first, 60% for the second and 40% for the last

column. The zeroth and the first column can be thought as “home” and “work”

for instance. Notice that “ith column” means “xi of all bit vectors x” such that

all x are elements of the same discrete representation set.

After the generation of bit vectors, we clustered them by hand. During this

process, we used the information of the dominant value in each offset instead

of the complete estimation for its 1 frequency. If 0 (1) is more frequent than

1 (0) in an offset (considering all bit vectors of DRSg
i of the same position of

period) then, we suppose that 0 (1) is dominant in this offset. We group bit

vectors with less number of |c| + |b| and with high number of matching offsets

(high |a| + |d|) with the non-dominant values in the corresponding offsets (a,

b, c, d were defined in Table 1). For instance, if the dominants of the offsets

are “1, 1, 1, 0” in the respective order and we have monday1 = {1, 0, 0, 0} and

monday8 = {0, 0, 0, 0}, then we can tell that these Mondays are really similar.

37

That is because they only got one non-matching offset and the offsets that match

have a large influence to the similarity because most of the values they contain

are not dominant. After the dissimilarity matrix is populated with results S

(Similar) and D (Dissimilar), we use the most straightforward approach and

built clusters by hand by using the logic of single linkage, because single linkage

will help the manual clustering with its chaining phenomenon.

Adapted Jaccard distance (|b|+|c|
|a|+|b|+|c|) and normalized Hamming distance

are chosen for the evaluation task as they are the most popular metrics among

two families of binary dissimilarity measures. AGNES is used as the clustering

algorithm. The plan was to observe the final clustering results and compare

them to the “right” clustering that we did manually. For the evaluation purpose,

we use micro-average-precision and micro-average-recall measures ([9]).

Micro-average-precision:
∑

i
TPi∑

i
(TPi+FPi)

Micro-average-recall:
∑

i
TPi∑

i
(TPi+FNi)

where

TPi: True positive (Sample belongs to cluster Ci, clustering result gives the

same information.)

FPi: False positive (Sample does not belong to cluster Ci, clustering result

tells that it does.)

FNi: False negative (Sample belongs to cluster Ci and clustering result tells

that it does not.)

While using micro-average-precision and micro-average-recall, we use the

same approach with [3]. First, we give cluster labels to the clustering results.

During this labeling, we choose a labeling that, as a result, will increase the TP

value as much as possible. It is done by using the most dominant object (the

bit vector with the largest percentage of occurrence in the cluster) in the result

clusters and relating these result clusters to the “right” clusters with the similar

dominant object.

Precision and recall values of three dissimilarity measures can be observed

38

at Table 4. Normalized Hamming distance and adapted Jaccard distance suffer

from the facts that are told previously, so their less successful result in recall is

not surprising.

5.4 Gain in Grid Search by Proposed Analytical Method

In this experiment, we inspect the gain in grid search with the usage of our

interval narrowing method. First, three sets of weights with λi ∈ [0.4, 0.9] are

randomly generated for k important places. [0.4, 0.9] interval is chosen to mimic

real life; we assume that visits to important places will probably not happen

with frequency more than 90% (close to 100% for home but it is very difficult

to find a similar example) or less than 40%. After the random generation of

weights, we change the v value (the number of non-matching offsets between two

bit vectors) and experiment the change in gain. Later, a new group of sets of

weights is generated for a larger k value and the experiment is again conducted

just like we explain above. The results of the evaluation can be seen in Table

5. The first column of the table is k values and the first row is v values. Notice

that the gain percentages are calculated by (upperbound−lowerbound)
(1−0) × 100 where

the denominator is the length of initial interval [0, 1] and v ≤ k × 3
5 because it

is not logical otherwise.

5.5 The Impact of Different Representations on the Ac-

curacy

In this subsection, we measure the performance of different representations for

their matching of important place content. For this evaluation, we generate 16

segments with the minimum probability of visiting an important place equal to

50%, period equal to 7 and day as the time granularity (|S| = 2688). Then

preprocessing and the extraction of important places are performed. After that,

the generation of different representations takes place.

Our initial periodic pattern mining techniques were based on geometric rep-

39

resentations. After location points which are not spatially contained in the

important places are omitted (due to the fact that they represent redundant

points because they are related to rarely taken trajectories), our techniques

were generating a minimum bounding rectangle or a convex hull from elements

of each location set. So it was possible to represent a location set with a geome-

try which depicts the place within the traced object travels. As exact matching

of generated geometries during the counting phase would cripple our accuracy,

we chose to group similar geometries by applying clustering with the geometry

comparison metric we propose. The details of previous techniques can be found

in [22].

After different discrete representations are generated by different techniques,

the accuracy of clustering/matching is evaluated with micro-average-precision

and micro-average-recall by comparing the techniques’ success in grouping same

important places contents together.

Experiments show that the technique which uses minimum bounding rect-

angles as discrete representations sometimes matches minimum bounding rect-

angles whose contents in terms of important places are different. Although false

positives can be seen in this technique, false negatives are never encountered.

On the other hand, the technique which uses convex hulls as geometric repre-

sentations has both false positives and false negatives. Empirical studies show

that false negatives of convex hull clustering are generally seen when all impor-

tant places are located as if they are positioned on a single line. When this

happens, little changes in the location measurements make large differences in

shape which can result in false negatives.

Although the technique which uses convex hulls has both kinds of errors,

experimental results show that its precision and recall are better compared to the

results of the technique which uses minimum bounding rectangles. That is due

to the larger approximation error of minimum bounding rectangles compared

to convex hulls.

Table 6 summarizes our techniques’ precision and recall results of important

40

place content matching. These results are calculated by comparing their clus-

tering results with the right clustering results obtained by the exact matching of

important place contents, i.e. same bit vectors are grouped together which forms

the right clustering. Using convex hulls is better than using minimum bounding

rectangles in terms of precision and recall while using bit vectors (such as in

MINIM) outperforms both of them. MINIM has 100% success in precision and

recall, because it uses representations based on important places visits and then

does an exact matching of these representations. So, MINIM’s precision and

recall is 100% by definition in this experiment.

5.6 Compactness of Different Discrete Representations

Techniques that use geometric discrete representations (which are briefly ex-

plained in Subsection 5.5) and MINIM are to be compared for their compactness

in their discrete representations’ occupied area. For this purpose, 16 segments

of data are generated with the period of 7 and day as the time granularity

(|S| = 2688). 50% is used as minimum probability of visiting an important

place.

Preprocessing, extraction of important places, generation of geometries/bit

vectors, the grouping of similar geometries or grouping of exact bit vectors are

all completed and the areas of resulting discrete representations are summed.

As discrete representations are directly related to frequent patterns, the sum-

mation of their area gives an idea about the compactness of the offered pattern

information. The evaluation results are shown in Table 7. Patterns based on

convex hulls are more compact than the patterns based on minimum bound-

ing rectangles and the reason is easy to realize; convex hull is by definition the

convex shape with the minimal area. So as minimum bounding rectangles are

convex shapes, convex hulls will occupy less area than rectangles. The large

superiority of the patterns of MINIM over the patterns of the technique which

uses convex hulls is not surprising too. As important places are not necessarily

close to each other, a convex hull that tries to spatially contain them occupies

41

a much larger area than the sum of areas that the important places occupy.

5.7 Parameter Sensitivity of our Techniques

In this subsection, we conduct experiments about the sensitivity of our tech-

niques. Two of proposed algorithms’ parameters are observed: the stopping

criteria and MinPTS. Other parameters which are EPS and min sup are

intuitive to set, therefore, they are not observed in this experiment.

5.7.1 The Stopping Criteria

This subsection contains two experiments regarding the stopping criteria pa-

rameter of our system. First, the results of the cluster validation indices with

different choices of stopping criteria for AGNES are given. Dunn’s index ([11],

[6]) and Davies-Bouldin index [8] are used as cluster validation indices. Sec-

ond, the change in mined patterns by our algorithm (µ-PIN) with the change

of stopping criteria value is inspected.

For the first experiment, we use our bit vector generator (explained in Sub-

section 5.3) for generating 200 bit vectors with λi ∈ [0.4, 0.9]. With this ap-

proach 9 data sets are generated. Each of them contains a different number of

important places (from 2 to 10). Notice the similarity of parameter values for

the data generator with the values used in Subsection 5.4. After the genera-

tion of data, AGNES is applied with different stopping criteria values and the

clustering quality is calculated using two indices.

For a partition U and the ith cluster of this partition (Xi),

Dunn’s validation index:

D(U) = min
1≤i≤c

{
min

1≤j≤c and j 6=i

{
δ(Xi, Xj)

max1≤k≤c{∆(Xk)}

}}

Davies-Bouldin validation index:

DB(U) =
1
c

c∑
i=1

max
i 6=j

{
∆(Xi) + ∆(Xj)

δ(Xi, Xj)

}

42

∆ is the intracluster dissimilarity and δ is the intercluster dissimilarity. For

the intracluster dissimilarity we use the complete diameter

(∆(Xi) = max{dissimilarity(y, z)} where y, z ∈ Xi) and for the interclus-

ter dissimilarity we use complete linkage (because we used complete linkage

in AGNES). Table 8 and 9 contain results calculated with Dunn and Davies-

Bouldin indices respectively. In both tables, the first column is the number of

important places and the first row is the stopping criteria. The bold values in

tables highlight the optimal stopping criteria for µ-PIN. In Dunn’s index, large

values are better, while in the case of Davies-Bouldin index it is the contrary.

During the usage of µ-PIN, we recommend either using the v value (the max-

imum number of different offsets allowed by the user) and doing a grid search

in the reduced interval. After that, finding the optimal stopping criteria will

be trivial if we use a cluster validation measure. Another possibility is to di-

rectly begin the grid search and again choose the optimal stopping criteria by

considering results of cluster validation measures.

For the second experiment, we use our trajectory data generator. We gen-

erate 8 segments with 50% as the minimum probability of visit for important

places, T = 3, and week as time granularity (|S| = 4032). In µ-PIN, EPS is

set to 6, MinPTS to 33, and min sup = 0.4. µ-PIN is run with different stop-

ping criteria and Dunn’s index is calculated for each run. After that, extracted

patterns are inspected. Table 10 contains the values of Dunn’s index for each

run of µ-PIN. The first column of the table is different positions of the period

and the first row is different values of stopping criteria. After a table such as

this is obtained, it is easy to set the stopping criteria value for each position of

the period.

After each run of µ-PIN, we inspect the extracted patterns.

For stopping criteria = 0.2, µ-PIN could not find any patterns because, as

the stopping criteria is low, µ-PIN’s “grouping of similar bit vector” phase did

an exact matching of bit vectors instead of an approximate matching. Thus,

the support of patterns in the data becomes really low (lower than 0.4). That

43

example supports our idea on MINIM’s potential shortcomings and the necessity

of µ-PIN. For stopping criteria = 0.4, µ-PIN could not find any patterns.

Although there are patterns with higher support compared to the first run,

they are still less than the threshold. For stopping criteria = 0.6, µ-PIN finds

a 2-pattern with 50% support. For stopping criteria = 0.8, µ-PIN finds two

2-patterns with 50% support each. But as the results in Table 10 suggests, it is

not wise to use 0.8 as the parameter value. After we inspect the clustering of bit

vectors, we realize that the intracluster dissimilarities are much higher than the

ones obtained after the run with stopping criteria = 0.6. i.e., very dissimilar

bit vectors depicting important place visits are grouped together.

5.7.2 MinPTS Parameter

This subsection contains the experiments pertaining to MinPTS parameter

of our methods. In Subsection 5.2, we explain our experiments on MinPTS

values diverging from the optimal value by decreasing. We observe that our

preprocessing method acts as a safety net in these cases and that all important

places are extracted even though MinPTS values much lower than the optimal

one are used. In this subsection, our algorithms are inspected for their behavior

in extraction of important places phase for increasing MinPTS values (always

taking larger values than the optimal one). First, the change in the number of

points (labeled as visits to important places) and later the change in the number

of important places is observed. After that, the change in extracted patterns is

inspected.

For experiments with MINIM, we generate trajectory data with our data

generator. 4 segments with period of 3, week as the granularity, 100% as

the minimum probability of visiting important places are generated. Later,

MINIM is run with EPS = 6, min sup = 0.8 and different MinPTS val-

ues. We know that the optimal value of MinPTS for this data set is 30 and

the number of extracted important places should be 12 (4 for each position of

the period). Table 11 contains the change in MinPTS parameter and the re-

44

sults of extraction of important place phase. As EPS is fixed, larger MinPTS

values make DBSCAN more selective for the extraction of important places.

Therefore, each time MinPTS increases, less important places are found. At

MinPTS = 130, no important place is found. After this experiment, we ob-

serve the pattern extraction performance of MINIM on this data set. For values

of MinPTS ∈ {30, 50, 70, 90, 110}, MINIM extracts a pattern of length 3 with

100% support. In each increase of parameter value, there is a decrease in the

number of important places. Therefore, each extracted pattern contains a lesser

number of important places which hints a loss of information. Only important

places of large density (such as home, work) are left and patterns using these im-

portant places are extracted. At the run with MinPTS = 130, MINIM cannot

find any patterns since no important place is extracted.

For the experiments with µ-PIN, we generate a similar data set to MINIM’s

with the difference in “minimum probability of visiting an important place”

which is set to 75%. Later, MINIM is run with EPS = 6, min sup = 0.4,

stopping criteria=0.6 and different MinPTS values. We know that the optimal

value for MinPTS for this data set is 25 and the number of extracted important

places should be the same with the previous experiment (12). Table 12 contains

the change in MinPTS parameter and the results of important place extraction.

Again, as MinPTS increases, less number of important places is extracted.

After that, we observe the change in patterns of µ-PIN. In runs with MinPTS =

25 and MinPTS = 45, µ-PIN finds a pattern of length 2 with 50% support.

But, as there are less important places in the case of MinPTS = 45, the pattern

content of the second run is less informative. For MinPTS = 65, two 2-patterns

are found: one with 50% support, and the other with 75%. This case has more

patterns than the case of MinPTS = 45, because as number of important

place decreases, it becomes easier to find similar bit vector contents because

they are now more general. For the run with MinPTS = 85, a 3-pattern with

75% support is found. Again, it contains less information than patterns of the

previous run. For the run with MinPTS = 105, a 2-pattern with 75% support

45

is extracted. In this run, it is impossible to obtain a 3-pattern even though

the min sup value is set really low. That is because, in one position of the

period, no important place is found which disables the possibility of obtaining

a pattern in this position. Similar to a case of MINIM, if a large value is given

to MinPTS, no important place is extracted by µ-PIN and thus no pattern is

mined.

5.8 Effectiveness of the Techniques

In this subsection, MINIM and µPIN are evaluated for their effectiveness on

synthetic and real world data sets. Furthermore, the periodic pattern mining

algorithm that can work on bottom granularity (STPMINE2v2 proposed in [7])

is inspected for its effectiveness in the same data sets.

5.8.1 Effectiveness on Synthetic Data Set

16 segments of data with period equal to 7, day as the time granularity and

100% as the minimum probability of visiting an important place are generated

(|S| = 2688). So, we generate a pattern of length 7 with 100% support.

We then set the parameters of MINIM. MinPTS is set to 5 and EPS to 6.

Notice that we easily find the optimal values for EPS and MinPTS, because

the data generator’s parameters such as α point to the optimal parameters.

min sup value is set to 0.9. MINIM finds a single pattern of length 7 with 100%

support. Extracted pattern’s content is compared with the generated pattern’s

important place content and it is seen that they totally match. This result

shows that MINIM is accurate.

After the evaluation of MINIM, we do the mining with STPMINE2v2 us-

ing the same dataset. STPMINE2v2 finds 7 patterns when it is run with a

low support value such as min sup = 0.14. Notice that, such a low min sup

value is normally problematic because it can cause the mining of redundant pat-

terns. Each position of the extracted patterns of STPMINE2v2 are important

places that are included in patterns of day granularity, but obviously there are

46

no further resemblance between the patterns of different granularities because

STPMINE2v2 does not have a clue about the pattern of the day granularity.

Let’s note that, the important places our techniques use are not bounded to

patterns of bottom granularity. i.e., it is possible that our important places are

formed without the need of existing patterns in the bottom granularity. If our

data generator was not generating patterns in bottom granularity (together with

coarser granularity), then STPMINE2v2 could not find any patterns obviously.

Later, a small dataset (8 segments) is generated with period equal to 3,

day as the time granularity and 75% as the minimum probability of visiting an

important place (|S| = 576).

For the evaluation of µPIN, first, the extraction of important places is com-

pleted. Later, the clustering of bit vectors is completed as explained in Sub-

section 5.3. After that, discrete representations in the same cluster are given

the same label and then the label sequence is mined for frequent patterns. 3

patterns with a support more than 50% is found. These three patterns will be

our testset. After that, µPIN is run with 0.4 as min sup value, MinPTS = 5

and EPS = 6. In µ-PIN’s bit vector grouping phase, we chose to use complete

linkage as the linkage function. The results of µPIN completely match with the

testset which implies that this technique is accurate.

After the evaluation of µPIN, we mine using STPMINE2v2 with the same

dataset. STPMINE2v2 cannot find any patterns until min sup is chosen as low

as 0.2. Each position of the extracted patterns of STPMINE2v2 are again the

important places that are included in the patterns of day granularity. It is obvi-

ously not possible for STPMINE2v2 to extract the patterns of day granularity;

only the important places which our techniques use are found by STPMINE2v2

and the reason of this is previously given.

47

5.8.2 Effectiveness on Real World Data Set

We also performed some preliminary experiments on a real data set2. The

data set consists of the GPS location measurements of an anonymous student

collected (with his consent) under the GeoPKDD project3. The time granularity

of the data set is second. The data set contains 814962 location-timestamp pairs.

We used µ-PIN for mining patterns from the real world data set, since we

only have 26 days of measurements (with a total of 7 days of gap between them

and with nearly 60% of hours in those 26 days completely missing). For this

limited data set, it is not possible to find patterns with MINIM which does exact

matching. For the same reason, we extracted patterns of the day granularity in

our experiments. Using 7 as the period (in conjunction with day granularity)

would be intuitive, but there will be only 5 segments if we used this period value.

So, we prefer to use T = 3 which give more than twice segments compared to

T = 7.

We begin by setting the parameters of µ-PIN. EPS is set to 0.01 (which is

close to 10 meters). We previously tell that EPS can be chosen rather easily,

because we can find it by considering the average area that buildings occupy.

After that, we try few values for MinPTS and then set it to 70. This value

is chosen, because after the extraction of important places phase, we see that

2
3 of total readings were labeled as visits of important places and the number

of extracted important places were close to what we predict considering the

routines of our lives. After the extraction of important places is complete, we

inspect these places. The cluster with largest spread (important place with

largest area) has a diameter close to 90 meters which can be the work place of

the traced person for instance.

After the extraction of important places is complete, we run µ-PIN with

min sup = 0.25 (25%) and choose the results obtained by using the optimal

stopping criteria value. We obtain the optimal value by considering values of
2the data set is available upon request
3http://www.geopkdd.eu

48

Dunn’s and Davies-Bouldin indices. The values of cluster validation indices

always pointed the same stopping criteria value during our experiment. After

the run is complete, we obtain 4 patterns. A 3-pattern with 27% support, two 2-

patterns with 27% support and, a 2-pattern with 45% support. The supports of

the patterns may not seem very high, but considering how small our real world

data set is, and the fact that we use 3 as period (work days are sometimes in the

same position of the period with holidays) this outcome was quite predictable.

The following experiment is conducted using the same data set (which is pro-

cessed such that there will be a single measurement per hour). STPMINE2v2’s

optimal parameters are chosen with grid search for each parameter and period

is set to 24. Its minimum support is set to 20% which can seem low, but we pre-

viously explained the limitations of the data set in hand. STPMINE2v2 finds

a 4-pattern and a 3-pattern with 21% support. After we observe the visited

places of each pattern, we see that each non-* position in the patterns contain a

visit to the same place. Later, we compare important places that our algorithm

extracted to the place that STPMINE2v2 found and realize that one of our

important places (out of 12) is matching with STPMINE2v2’s place.

Experiments on the real world data set show that important places which

cannot be extracted at finer granularities can actually be found at coarser gran-

ularities with our method. Important places extracted at coarser granularities

are then used for finding patterns which cannot be observed at finer granulari-

ties. Therefore, we can safely say that µ-PIN does not need patterns in bottom

granularity for mining patterns at coarser granularities. Furthermore, the ex-

periment shows that a periodic pattern miner working on bottom granularity

misses the existing patterns of coarser granularities.

5.9 Efficiency of the Techniques

Several number of segments with granularity day, T = 7 are generated and the

cost of our techniques with the increasing number of segments is evaluated. 7

is chosen as the period value, because we assume that it is a moderate value

49

while 4 (which is generally used with week granularity) is a low and 12 (which

is generally used with month granularity) is a high value for period.

In Figure 9, the cost of techniques which use different discrete representations

can be seen. MINIM is faster than the technique using minimum bounding

rectangles because as MINIM uses bit vectors as representations and does an

exact matching on these representations, it does not need a “grouping of similar

geometries” step. The technique which uses minimum bounding rectangles is

slightly faster than the one which uses convex hulls, because the convex hull

building algorithm is more costly than minimum bounding rectangle building

algorithm (O(N log k) versus O(N) to be exact). Our experiments show similar

costs for the phases after the extraction of frequent 1-patterns in all techniques

which is the reason why we do not comment on their addition to the total

cost. In Figure 10, the cost of µPIN can be inspected. Notice that MINIM’s

and µPIN’s cost are less than quadratic. Both MINIM and µPIN are indeed

efficient and scalable.

6 Conclusion

In this paper, we propose two techniques for mining periodic patterns from the

spatio-temporal sequence of a single moving object at different time granulari-

ties.

First, important places are extracted by the application of a density-based

clustering technique. As the second step, remaining location points are used for

obtaining concise discrete representations. The subsequent phase can be divided

into two categories: (i) Exact matching of important place contents, (ii) Similar

matching of important place contents. After the matching phase, the initial

spatio-temporal sequence becomes discretized and the frequent 1-patterns are

obtained. After that, it is the straightforward application of techniques proposed

in [20] and [7] for the extraction of the periodic patterns from the discretized

sequence.

50

During our experiments, we use both synthetic and real world data sets. Dif-

ferent parts of the proposed techniques are evaluated. The preprocessing step

(elimination of high speed data) is evaluated for its contribution to the gain of

performance and for its behavior as a safety net for wrong parameter choices

in the extraction of important places. We show that up to 34% gain of perfor-

mance is possible using our preprocessing. Furthermore, our experiments show

that none of the necessary location measurements are omitted by our prepro-

cessing step. After that, the proposed binary dissimilarity measure is compared

with two popular distance metrics of different binary metric families where our

measure outperforms the popular metrics during the usage in conjunction with

AGNES. Later, the gain in grid search by proposed analytical method for find-

ing the most narrow interval for the stopping criteria is evaluated. After that,

the impact of different representations on the accuracy of our techniques is eval-

uated by the inspection of their matching accuracy of important place contents.

Compactness of different representations are then evaluated. Later, the sen-

sitivity of of our methods to their parameters are evaluated. The subsequent

section evaluates the effectiveness of the proposed techniques. Both techniques

are perfectly doing the desired discretization process and they are accurate in

extracting the frequent periodic patterns from both synthetic and real world

data sets. The last section contains a cost analysis for the proposed techniques.

All our techniques are shown to be efficient and scalable.

As a future direction of research, an extensive study on several socioeco-

nomic layers of society for obtaining an improved method for the extraction

of important places should be conducted. Furthermore, the extension of our

techniques with an effective method for the detection of optimal periodicity and

granularity is needed.

51

References

[1] D. Ashbrook and T. Starner, Learning Significant Locations and Pre-

dicting User Movement with GPS, In Proceedings of IEEE Sixth Inter-

national Symposium on Wearable Computing, 2002

[2] N. Beckmann, H. P. Kriegel, R. Schneider, B. Seeger, The R*-Tree:

An Efficient and Robust Access Method for Points and Rectangles, SIG-

MOD Conference, 1990

[3] R. Bekkerman and M.Sahami, Semi-supervised Clustering using Com-

binatorial MRFs, In Proceedings of ICML 2006 Workshop on Learning

in Structured Output Spaces, 2006

[4] Claudio Bettini, S. Jajodia, Sean X. Wang, Time Granularities in

Databases, Data Mining and Temporal Reasoning, Springer

[5] Claudio Bettini, Sean X. Wang, S. Jajodia, Jia-Ling Lin, Discovering

Frequent Event Patterns with Multiple Granularities in Time Sequences,

IEEE Transactions on Knowledge and Data Engineering, 1998

[6] J.C. Bezdek, N.R. Pal, Some new indexes of cluster validity , IEEE

Transactions on Systems, 1998

[7] H. Cao, N. Mamoulis, and D. W. Cheung, Discovery of Periodic Pat-

terns in Spatiotemporal Sequences, IEEE Transactions on Knowledge

and Data Engineering, 2007

[8] D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans-

actions on Pattern Recognition and Machine Intelligence, 1979

[9] Inderjit S. Dhillon, Subramanyam Mallela, Dharmendra S. Modha,

Information-Theoretic Co-clustering, Proceedings of The Ninth ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, 2003

52

[10] L. R. Dice, Measures of the Amount of Ecologic Association Between

Species, Ecology, 1945

[11] J. Dunn, Well separated clusters and optimal fuzzy partitions,

J.Cybernetics Vol. 4, 1974

[12] Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid, Using

Convolution to Mine Obscure Periodic Patterns in One Pass, EDBT,

2004

[13] Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid, Peri-

odicity Detection in Time Series Databases, IEEE TKDE, 2005

[14] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, A

Density-Based Algorithm for Discovering Clusters in Large Spatial

Databases with Noise, Proceedings of 2nd International Conference on

Knowledge Discovery and Data Mining, 1996

[15] Fosca Giannotti, Mirco Nanni, Dino Pedreschi, Fabio Pinelli, Trajec-

tory Pattern Mining, KDD 2007, 2007

[16] Fosca Giannotti, Mirco Nanni, Dino Pedreschi, Efficient Mining of Se-

quences with Temporal Annotations, In Proceedings of SIAM Confer-

ence on Data Mining, 2006

[17] Antonin Guttman, R-Trees: A Dynamic Index Structure for Spatial

Searching, Proc. of ACM SIGMOD International Conference on Man-

agement of Data, 1984

[18] R. V. Hamming, Error Detecting and Error Correcting Codes, Bell Sys.

Tech. Journal, 1950

[19] J.Han, W.Gong, Y.Yin, Mining Segment-wise Periodic Patterns in

Time-related Databases, In Proc. of Intl. Conf. on Knowledge Discovery

and Data Mining, 1998

53

[20] J.Han, G.Dong, Y.Yin, Efficient Mining of Partial Periodic Patterns

in Time Series Database, In Proc. of International Conference on Data

Engineering, 1999

[21] P. Jaccard, Nouvelles Recherches Sur La Distribution Florale, Bulletin

de la Societe Vaudoise de Science Naturelle, 1908

[22] Sezin Karli, Mining Periodic Patterns in Spatio-Temporal Sequences at

Different Time Granularities, Master of Science Dissertation, 2007

[23] Leonard Kaufman, Peter J. Rousseeuw, Finding Groups in Data: An

Introduction to Cluster Analysis, Wiley-Interscience

[24] S. Kulczynski, Die Pflanzenassoziationen Der Pieninen, Bulletin Inter-

national de l’Academie Polonaise des Sciences et des Lettres, 1927

[25] N. Marmasse and C. Schmandt, Location-aware Information Delivery

with ComMotion, HUC, 2000

[26] F. Murtagh, Multidimensional Clustering Algorithms, Physica-Verlag,

1985

[27] C. Olson, Parallel algorithms for hierarchical clustering, Parallel Com-

puting, 1995

[28] D. J. Rogers and T. T. Tanimoto, A Computer Program for Classifying

Plants, Science, 1960

[29] P. F. Russell and T. R. Rao, On Habitat and Association of Species of

Anopheline Larvae in Southeastern Madras, J. Malar. Inst. India, 1940

[30] G. Salton, On the Use of Term Associations in Automatic Information

Retrieval, Proceedings of COLING-86, 1986

[31] Jorg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu, Density-

Based Clustering in Spatial Databases: The Algorithm GDBSCAN and

its Applications, Data Mining and Knowledge Discovery, 1998

54

[32] R. R. Sokal and C. D. Michener, Statistical Method for Evaluating Sys-

tematic Relationships, University of Kansas Scientific Bulletin, 1958

[33] J.Yang, W.Wang, P.S.Yu, Infominer: Mining Surprising Periodic Pat-

terns, In Proc. of 7th Intl. Conf. on Knowledge Discovery and Data

Mining, 2001

[34] J.Yang, W.Wang, P.S.Yu, Infominer+: Mining Partial Periodic Pat-

terns with Gap Penalties, In Proc. of the 2nd IEEE Intl. Conf. on Data

Mining, 2002

[35] G. U. Yule and M. G. Kendall, An Introduction to the Theory of Statis-

tics, 14th ed. Hafner, 1950

[36] Changqing Zhou, Dan Frankowski, Pamela Ludford, Shashi Shekhar,

Loren Terveen, Discovering Personal Gazetteers: An Interactive Clus-

tering Approach , Proceedings of the 12th ACM Intl. Symp. on Advances

in Geographic Information Systems, 2004

[37] Changqing Zhou, P. Ludford, D. Frankowski, and L. Terveen, An Ex-

periment in Discovering Personally Meaningful Places from Location

Data, In Proc. CHI, 2005

55

0 1
0 a b
1 c d

Table 1: Contingency table

56

Subsection Content Related part(s) Bottom line
5.2 Safety net for wrong

MinPTS choices, Per-
formance gain, Loss of
accuracy

Subsection 4.1.2 Our preprocessing nullifies the
sensitivity of our methods to-
wards low values of MinPTS.
Performance gain is up to 34%.
No loss in necessary points is
observed.

5.3 Bit vector clustering
performance of different
dissimilarity measures

Subsection 4.1.3 Proposed dissimilarity measure
is performing better than two
widely used measures on our
type of data.

5.4 Gain in grid search by
proposed method

Subsection 4.1.3 Our analytical method can re-
sult up to 90.93% of gain by nar-
rowing stopping criteria’s grid
search interval.

5.5 Impact of different
representations on the
accuracy of important
place content matching

Subsection 4.1.3 and [22] Bit vector representation has
better accuracy than geometric
representations.

5.6 Compactness of differ-
ent representations

Subsection 4.1.3 and [22] Bit vector representation is
more compact than geometric
representations.

5.7 Sensitivity of our tech-
niques to the parame-
ters

Subsection 4.1.3 Giving a low value to stopping
criteria can decrease the sup-
port of potential patterns and
therefore several patterns can
be missed. In the contrary case,
our algorithm extracts patterns
with very dissimilar bit vectors
in the same non-* element of the
pattern. If MinPTS parame-
ter is given a high value, then
DBSCAN becomes more selec-
tive and therefore extracts less
important places. It is possible
that our methods do not find
any important places and thus
any patterns.

5.8 Effectiveness of our al-
gorithms and a periodic
pattern miner which
works at bottom gran-
ularity on synthetic and
real world data sets

Section 4 and [7] Our algorithms find the gener-
ated patterns of the synthetic
data set while miner at the
bottom granularity misses these
patterns. In experiments with
real world data set, our algo-
rithm finds patterns which are
again overlooked by the miner
at bottom granularity.

5.9 Efficiency of our algo-
rithms

Section 4 and [22] Proposed algorithms’ cost is less
than quadratic.

Table 2: Overview of experiments

57

min. % of time spent in important places 35% 50% 65% 80%
Gain in performance 34% 17% 10% 6%

Table 3: Gain in performance with the proposed preprocessing method

58

Precision Recall
N. Hamming Dist. 100% 70%
A. Jaccard Dist. 100% 70%
Proposed Func. 100% 100%

Table 4: Precision and recall for dissimilarity functions

59

v=1 v=2 v=3 v=4 v=5 v=6
k=2 79.17 - - - - -
k=3 87.6 - - - - -
k=4 80.77 50.63 - - - -
k=5 86.8 61 38.85 - - -
k=6 85.7 61.66 41.74 - - -
k=7 87.44 66.12 47.08 32.85 - -
k=8 90.8 73.05 56.41 43.2 - -
k=9 84.28 64.03 47.8 35.12 25.62 -
k=10 90.93 74.85 59.14 46.61 35.99 27

Table 5: The percentage of gain obtained by our analytical method

60

Precision Recall
Technique using mbrs 74% 72%

Technique using convex hulls 82% 77%
MINIM 100% 100%

Table 6: Precision and recall results for three techniques

61

MBR Convex hull Bit vector
4856045 units 1681503 units 7297 units

Table 7: Sum of areas of three different discrete representations

62

s. criteria=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
imp. places=2 − − − 2.15 2.15 2.15 2.15 1.27 1.27

3 − − − 1.73 1.73 1.73 1.11 1.42 1.42
4 − − 1.08 1.33 1.20 1.11 1.32 1.32 1.15
5 − 1.01 1.23 1.16 1.27 1.27 1.05 1.17 1.18
6 − 1.03 1.31 1.12 1.14 1.04 1.07 1.14 1.12
7 − 1.07 1.10 1.02 1.07 1.11 1.03 1.16 1.06
8 − 1.29 1.04 1.01 1.19 1.03 1.02 1.09 1.03
9 1.14 1.13 1.08 1.05 1.03 1.08 1.12 1.08 1.10
10 1.02 1 1.03 1.09 1.04 1.01 1.04 1.08 1.02

Table 8: Dunn’s index values for several numbers of important places and dif-
ferent stopping criteria values

63

s. criteria=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
imp. places=2 − − − 0.37 0.37 0.37 0.37 1.15 1.15

3 − − − 1 1 1 1 1.34 1.34
4 − − 0.9 1.02 1.11 1.21 1.31 1.31 1.53
5 − 0.56 0.89 0.88 1.2 1.2 1.32 1.38 1.54
6 − 0.61 0.69 1.04 1.11 1.37 1.35 1.5 1.61
7 − 0.76 0.86 1.02 1.28 1.31 1.37 1.47 1.56
8 − 0.84 0.86 1.05 1.26 1.31 1.45 1.54 1.72
9 0.17 0.74 0.97 1.22 1.37 1.5 1.47 1.63 1.77
10 0.25 0.68 0.94 1.3 1.36 1.44 1.53 1.69 1.77

Table 9: Davies-Bouldin index values for several numbers of important places
and different stopping criteria values

64

s.criteria=0.2 0.4 0.6 0.8
Zeroth position - 1.33 1.5 1.2
First position - - - 1.5

Second position - 2.2 2.2 1.25

Table 10: Dunn’s index values for different stopping criteria values in different
positions of the period

65

MinPTS=30 50 70 90 110 130
important places 12 10 6 4 3 0

locations 1435 1267 868 651 448 0

Table 11: Results of (MINIM’s) important place extraction for different
MinPTS values

66

MinPTS=25 45 65 85 105 115
important places 12 10 7 3 2 0

locations 1225 1036 798 427 322 0

Table 12: Results of (µ-PIN’s) important place extraction for different MinPTS
values

67

Figure Captions

1. Location points of the location set

2. Visits to two important places with label 0 and 2

3. Segments of Sg of period T

4. Illustration of the data mining process

5. Case study with two segments and possible outcomes of the linear inter-

polation between consecutive points:

• Short segment after a short segment

• Short segment after a long segment

• Long segment after a short segment

• Long segment after a long segment

• The shortest path

• A possible (and long) path

6. A max-subpattern tree

7. A frequent 3-pattern:

• Zeroth position

• First position

• Second position

8. A complete trajectory of a single position of the period

9. Cost of techniques versus the number of segments

10. Cost of µPIN versus the number of segments

68

Fig. 1: Location points of the location set

69

Fig. 2: Visits to two important places with label 0 and 2

70

Fig. 3: Segments of Sg of period T

71

Fig. 4: Illustration of the data mining process

72

(a) Short segment after a short segment (b) Short segment after a long segment

(c) Long segment after a short segment (d) Long segment after a long segment

(e) The shortest path (f) A possible (and long) path

Fig. 5: Case study with two segments and possible outcomes of the linear inter-
polation between consecutive points

73

Fig. 6: A max-subpattern tree

74

(a) Zeroth position

(b) First position (c) Second position

Fig. 7: A frequent 3-pattern

75

Fig. 8: A complete trajectory of a single position of the period

76

Fig. 9: Cost of techniques versus the number of segments

77

Fig. 10: Cost of µPIN versus the number of segments

78

